Иллюстрированный самоучитель по Visual Studio.Net




Пример с матрицей МКР - часть 4


В узлах сетки вблизи границ (то есть в узле 1 и узле N-1) уравнения упрощаются, так как £/„ и UN считаются известными и поэтому перемещаются в правую часть уравнения. Так, первое уравнение системы станет:

b1U1+c1U2=0,

а последнее:

an-1Un-2+bn-1Un=+1=0,

Все остальные уравнения будут иметь вид (3). Теперь пора изобразить всю систему уравнений, используя матричные обозначения и не отображая многочисленные нули. Для простоты будем считать, что N = 5:

b1

c1

U1

-a1U0

a2

b2

c2

U2

0

a3

b3

c3

U3

=

0

a4

b4

U4

-c4U5

Вы видите, что матрица системы уравнений имеет характерную регулярную трех-диагональную структуру, а структура вектора правых частей тоже легко прочитывается. Граничные; условия краевой задачи заняли подобающие им крайние места, а внутренние позиции — нули.

Решать такую систему следует специальным методом, который называется методом прогонки и является модификацией метода Гаусса. Он работает во много раз быстрее самого метода Гаусса. Мы реализуем его немного позже, а сейчас попробуем применить алгоритм generate из библиотеки STL для генерации матрицы, имеющей рассмотренную структуру, и вектора решений U. В простых случаях он известен и легко угадывается. Затем с помощью сечений произведем умножение Матрицы на вектор и убедимся в том, что вектор правых частей системы уравнений будет иметь правильную структуру и значения. Эту часть работы рассматривайте как дополнительное упражнение по использованию структур данных типа valarray и slice. В процессе решения краевой задачи мы будем пользоваться контейнерами другого типа (vector), так как метод прогонки не требует применения каких-то особых приемов работы с сечениями.

Если для простоты принять р = 1, h = 1, U0 = 100, a UN =0, то коэффициенты матрицы будут равны ai = сi = 1, bi. = -2 , k = 0, а решение U(x) известно заранее. Это — линейно спадающая от 100 до 0 функция, а в более общем случае — функция произвольных граничных условий:

U(x)=U0+[Un-U0]x/L

где L — длина всей расчетной области. Правильность решения проверяется прямой подстановкой в уравнение (1).




Содержание  Назад  Вперед